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Abstract

Explainable Al (XAl) methods yield human-understandable,
often post-hoc descriptions of a machine learning (ML)
model’s behavior. Evaluation metrics for XAl methods fall
within readily-measurable dimensions such as fidelity of the
explanation to the underlying ML model, various forms of
human comprehensibility, computational overhead, and
others. We argue that—given ML models’ role as only one
piece of larger, deployed sociotechnical systems—these
metrics alone do not enable the selection of an appropriate
XAl method, or methods, for a specific use case. Indeed, it
is necessary to include additional context, related to the
user of the system as well as the downstream impact of the
ML model. Inspired by prior work in human-computer
interaction and computational social choice, we propose a
learning-based framework for the selection of XAl methods
that are tailored to each user and context.

Introduction

As machine learning (ML) models are increasingly used to
influence important decisions, it is becoming increasingly
important to understand the output of these models. This is
especially important when the ML model is a “black box,”
and when the user is not an ML expert.

Researchers have proposed a variety of methods to explain
the output of ML models, and a variety of properties to
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Figure 1: An overview of our framework. Data is passed to a fixed
ML model, which outputs a prediction. The user receives the
original data, the ML prediction, and the explanation, and
assesses the usefulness in their decision-making scenario.

characterize their performance. Common properties of
explanation methods include fidelity (how well the
explanations match the underlying model), stability or
consistency (whether similar inputs or similar models result
in similar explanations), comprehensibility (whether the
explanations are understood by an average person), and
computational complexity, among others [6,9, 22].

These properties help distinguish between different ML
explanation methods, but they cannot indicate whether the
resulting explanations are useful to the user. We believe
that ML explanations should be tailored to each user, in
each decision-making environment. We refer to the
combination of user-and-environment as context: for
example, an engineer debugging a marketing model might
use complex explanations to understand aberrant
behavior—this is one context. A policy analyst might
interrogate the same marketing model to determine if it
discriminates against certain customers—this is another
context.

Context is defined variously in the HCI community but
largely focuses on information that can be used to
characterize the situation of an entity [1,5, 7,8, 18]. An entity
is a person, place, or object that is considered relevant to
the interaction between a user and an application, including
the user and applications themselves. Our definition fits this
general definition of context.

Prior work has considered aspects of “good” ML
explanations from a philosophical perspective [13], and
through the lens of performance metrics [11]; another
related concept is personalized explanations [19]. However,
most prior work focuses on fixed explanation methods for a
particular context; we consider an adaptive setting where
the user or context may change.

We propose a framework for learning the most-useful
explanations for each context through user feedback. First,
we draw on prior work to emphasize why context matters.

Explanations based on Context

Context plays an important role in deployed ML systems:
different users might prefer different explanations [26], or
the same user might prefer different explanations for
different use cases [11]. As examples, we discuss two
well-studied phenomena—information overload and
information presentation—that motivate user-specific
preference modeling for explainability.

Information Overload [24] refers to the difficulty of
effectively making decisions when presented with too much
information. The amount of information presented by an
explanation method can typically be controlled via the
system designer. Take for example the class of feature
attribution methods (e.g., SHAP [14], LIME [16], Saliency
Maps [21], Guided Backprop [23]), which explain a given
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Figure 2: Explanation generated
by guided backprop [23] for an
image of a Zebra from

ImageNet [17], for a ResNet50
model [10].

prediction by attributing weights to each input feature.’
Highlighting all relevant features might overwhelm certain
users, but highlighting only some features might not (for
example, the K% most-important features). Figure 2 shows
an example of how this could be done in a computer vision
setting—and can lead to different looking explanations.

Information Presentation The format in which information
is presented can have significant impacts on the end

user [2,20]. Different methods provide explanations in
different formats. Feature-attribution-based methods
highlight salient input features [14, 16,21, 23] as shown in
Figure 2; concept-based explanations [12] provide
human-understandable concepts that were used to make
predictions (e.g., a zebra was predicted because of stripes);
and counterfactual explanations [25] provide guidelines on
how the world must differ for some outcome to occur (e.g.,
an applicant would have been offered a loan if their income
had been at least $50,000). Due to the inherent differences
in the way information is presented, each class of methods
can have varying amounts of usefulness for different use
cases and different end-users.

These two examples illustrate that a useful explanation
would depend on the context, i.e. both the user and the
application for which an explanation is needed. In the next
section, we provide a possible way to incorporate such
information when explaining ML model output.

Mapping Explanations to Users

Prior work has identified several metrics for characterizing
explanation methods and their output, including fidelity,
stability, comprehensibility, and so on. The set of these

"In line with the message of this paper, we make no specific claims
about the efficacy of specific explainability methods; rather, methods men-
tioned by name serve as examples of popular approaches to explainable
ML—complete with their pros and cons, known and unknown.

metrics constitutes embedding space for the set of
explanation methods and their outputs. To make
context-aware explanations, we can learn which areas of
this embedding are appropriate for different contexts by
eliciting user feedback.

Consider for example the two-dimensional embedding in
Figure 3: one axis represents fidelity, while the other
represents ease of communication We hypothesize that
different regions of this embedding space will be
appropriate in different contexts; we propose learning which
regions are useful in different contexts by eliciting user
feedback. To make this idea more concrete, we formalize
this process into a mathematical framework.

Framework

Our setting is summarized in Figure 1: an ML system and
explanation method output both predictions and
explanations to a user, who judges the usefulness of this
output. To clarify, we use a small example.

Example. A doctor is using a black-box ML system to
diagnose a rare disease. The system takes as input a
patient’s electronic medical record (EMR) and outputs a
probability of positive diagnosis. There are 10 different
explanation methods available to explain the ML system
output: each method returns the k features of the EMR (text
fields) with the largest Shapley values, fork =1, ..., 10.

We use a mathematical framework to reason in this setting.
Let X and Y be the sets of input and output labels of the
ML system. In our example, X is a set of EMRs, and

Y = [0, 1] is the probability of a positive diagnosis. Let

f : X = Y denote the prediction function of the ML system:
f(x) is the predicted label for data point z.

Let M denote the set of possible explanation methods, and
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Figure 3: Hypothetical mapping of
explanation methods to an
embedding space. In this example
embedding space is defined by
fidelity and ease of communication.
Each explanation method
corresponds to a point in this
space, and we aim to model
different user’s context-dependent
preferences. The highlighted
regions show a hypothetical
mapping to each user’s preference
function over the embedding
space. That is, in the given context,
explanations from the highlighted
region will result in maximum utility
for the user.

let Z denote the set of possible explanations returned by
these methods. In our example, M = {m,...,mio},
where my, returns the k features with the largest Shapley
values; in this example, the set of explanations Z is the set
of all subsets of EMR features, up to size 10.

Each explanation method m € M is itself a function

m: X — Z, where m(z) is the explanation for data point
x.2 Using our example, mo () would return the set of two
features with the greatest Shapley values for input z. Finally,
the user considers the input data, the prediction, and the
explanation, and determines the usefulness of this output.

Modeling Explanations We hypothesize that users will
judge the usefulness of explanations along the many criteria
(or metrics) developed by the HCI and ML communities. For
this reason, we represent each explanation z as a point in
the embedding space described in the previous section.
For example, explanations returned by m; might have a
high “ease of communication score” but a low “fidelity”
score, while explanations from my might have lower “ease
of communication” and greater “fidelity.”

Modeling the User We represent the user’s perception of
usefulness with a utility functionw : X x Y x Z — [0, 1],
which is a standard tool for modeling preferences. In a
deployed setting we would use user feedback to learn a
numerical representation of u; here we adapt techniques
from preference elicitation (e.g., [3]). There are two
standard approaches for learning u, which use different
types of questions. We can learn relative utility by using
comparison questions: we ask the user which input-output
tuple is more useful, (z,y, z) or (z/, 3/, 2). If (x,y,z) is
more useful, then we learn the constraint

2Explanation methods usually depend on the ML model; in our setting
the ML model is fixed, and this dependence is implicit.

u(z,y,s) > u(x',y', 2"), otherwise

u(z,y,s) < u(a’,y’,2"). Alternatively, we can learn
absolute utility with Likert-style questions, such as “on a
scale from 1 to 5, how useful is (z,y, z) ”; responses to
these questions map directly to numerical values, u(z, y, 2).

Generating Context-Aware Explanations After learning a
model of user utility in a decision-making context, u(z, y, z),
our framework can be used to generate context-aware
explanations. When presented with a new data point x and
ML output y, we identify the most useful explanation to the
user by solving the problem max, ¢ z u(z, y, 2).

Discussion & Steps Forward

This position paper is conceptual in nature but outlines a
framework that could be implemented directly using
present-day elicitation and learning techniques from the
computational social choice literature [4]. We note that, in
many industry settings, our proposed framework forms a
component of yet a larger system—a deployment context,
that changes based on interaction with the outside world,
shifting business constraints and goals, advances in
technology, rotation of employees and clients, and so on.

In the face of a changing production environment, ML
models get deployed and largely remain static; metrics
degrade over time due to data drift, upstream and
downstream changes, and human error. We would expect a
user’s context, and thus their internal and expressed
preferences, to change over time as well based not just on
those dynamics but also by virtue of discovering their
preferences via interaction with the system itself [15]. Thus,
one core direction for future research would be the
incorporation of this larger “business lifecycle” into the
context we address in our present framework.
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