Diffused Redundancy in Pre-trained Representations

NeurIPS 2023

Vedant Nanda

Till Speicher John P. Dickerson Krishna P. Gummadi Adrian Weller Soheil Feizi
TL;DR of Diffused Redundancy

We show that a randomly selected subset of neurons can perform (almost) as well as the full layer for downstream tasks.

- Implications for nature of learned representations: do distinct parts of a network learn distinct features? Or are features diffused all over the neurons?
- Our results suggest diffused redundancy of features!
- While primarily an “understanding” paper, it also opens new directions for efficient finetuning / inference.
- We highlight possible fairness tradeoffs when using random subsets of neurons.
Pretrained Representations Are Everywhere

- For any NLP/Vision task:
 - Pick a pre-trained backbone
 - Solve the downstream task using features extracted from this backbone
 - Eg: Image Classification
- Ground-breaking performance!
- However, understanding the nature of learned features is an ongoing research effort
Understanding The Nature of Learned Representations

• **Explainability:** Compositionality between parts of a network

![Diagram showing the compositionality between parts of a network](image)

 - Representations need not store all information about the input
 - Do we need all neurons?
Diffused Redundancy

Learned features are spread throughout the layer, and thus a random subset of (of sufficient size) neurons suffices for most downstream tasks

DL Theory: Few neurons contain enough information to efficiently transfer

Explainability: Information is redundantly spread out over many neurons, thus still allowing compositionality
Evidence of Diffused Redundancy

- Degree of diffused redundancy depends on downstream task and pretraining loss
- More evidence in the paper!
Possible Fairness Considerations

• A natural application — use the “compact” representation for efficient transfer
• However, this can lead to potential biases

Some classes are affected more than others!
More Results in The Paper!

- How is diffused redundancy affected by:
 - last layer size,
 - different pretraining losses,
 - different pretraining datasets
- Why this happens — comparison to PCA and random projections
- Come chat with me at my NeurIPS poster! #634 Wed 13 Dec, Poster Session #3

Please reach out if you’d like to chat! vnanda@mpi-sws.org

arxiv.org/abs/2506.00185

github.com/nvedant07/diffused-redundancy