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Measuring Representational 
Robustness of Neural Networks 
Through Shared Invariances

Motivation

References

We propose STIR, a method 
to measure shared invariance 
between neural networks.

Explicitly captures invariances by interacting 
with underlying models

Paper: tinyurl.com/stir-paper 
Code: github.com/nvedant07/stir

Offers additional insights beyond 
representation similarity measures

Useful tool to understand DL pipelines

pip install stir-invariance

𝒎1(reference)

𝒎1(𝙓) 

≅ 

𝒎1(𝙓’)

STIR – Similarity Through Inverted Representations

Problem Statement

STIR offers insights beyond 
representation similarity

Losses & network architectures

1.  Find Identically Represented Inputs (IRIs) 
𝙓, 𝙓’ s.t. 𝒎1(𝙓) ≅ 𝒎1(𝙓’)

argmin𝙓’  ℒ(𝙓’)

ℒ(𝙓’) = || 𝒎1(𝙓) - 𝒎1(𝙓’) ||2
𝙓’ = 𝙓’ – 𝛼 ∇𝙓’ ℒ

2. Measure similarity of 𝒎2(𝙓) and 𝒎2(𝙓’)

Use a representation similarity measure Srep !

Training datasets

𝙓

𝙓’

Other investigations

Given: network 𝒎2 : ℝ
m → ℝd2, a reference network 𝒎1: ℝ

m → ℝd1, inputs X

How to measure shared invariances of 𝒎2 wrt 𝒎1 on X i.e.,Sinv( 𝒎2 | 𝒎1, 𝙓 )?

Sinv(𝒎2 | 𝒎1, 𝙓, Srep) = 

Srep (𝒎2(𝙓), 𝒎2(𝙓’)) = 

LinearCKA(𝒎2(𝙓), 𝒎2(𝙓’))

𝒎1| 𝒎2 𝒎2| 𝒎1

STIR 0.605 ± 0.013 0.562 ± 0.023

CKA 0.967 ± 0.000

𝒎1| 𝒎2 𝒎2| 𝒎1

STIR 0.934 ± 0.003 0.939 ± 0.002

CKA 0.937 ± 0.000

Vanilla Training

✓Models trained with AT have higher STIR scores than Vanilla

✓AT explicitly induces invariance to ℓp perturbations (p=2 in this 
experiment), hence higher STIR scores are expected

✓CKA is high in both cases and hence does not offer such insights

2 ResNet18 only differing in initial weights

✓ Adversarial training leads to higher STIR scores

✓ Higher STIR when residual networks are reference models

✓ Shared invariance drops for later layers

✓ Drop lesser for AT than Vanilla

✓ Drop-off for STIR higher than that of CKA

𝙓’

𝙓

𝙓’

✓ [Effect of Random Init Across Layers] Models trained with AT 
consistently lead to higher STIR scores across layers

✓ [Comparing TRADES MART and AT] Despite similar ℓp ball 
robustness, only moderate STIR scores, thus indicating different 
behavior of these models outside the ℓp ball

✓ [Updating Models w/ More Data] STIR monotonically increases 
as we add more data, but with diminishing returns

STIR CKA

ATVanilla

✓ Instead of using approximations of human perception (e.g., class 
labels), we have full access to representations of a neural network

✓ Allows us to investigate interesting questions about Deep Learning

✓ Useful for a future society with multiple agents controlled by neural 
nets where all networks should be similarly robust (e.g., driverless cars)

High shared invariance necessary for robustness!

   Whatever is same for 💁                    Whatever is same for another 💻
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