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ROBUSTNESS BIAS

Most notions of fairness are defined by system outputs

Noise can cause a system to treat groups unfairly
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DATA PRELIMINARIES - PARTITION

Partition by
Sensitive Attribute

Partition by
Predictor Variable




INTUITION
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INTUITION

Predictor Partition Robustness
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Blue 2/3
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ROBUSTNESS BIAS

Depends on the
Data, Model, and Partition
*and also on tau
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METRICS

- Given a dataset D, T> 0, and partition PCD.
- Let dg(x)be the minimal distance from point x to a decision boundary.

- Caleulate Proportion of that are more than Relative average distance
tau from decision boundary to the decision boundary
P(r) = {(x,y) € P|dp(x) > 7,y =1} ) AUC(Ip) — AUC(S prsp Ip')
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RESEARCH QUESTIONS
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Does robustness bias exist in the wild?

How much does it depend on the dataset? the partition? the model?
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MLP

VGG

ResNet

DenseNet

AlexNet
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BUT WE CAN'T COMPUTE dy(x)

- All our models (except MLP) do not permit direct computation
- We can approximate dy(x)nith upper or lower bounds
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RESULTS
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RECALL:
Lower curve means more vulnerable
Higher curve means less vulnerable
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Qualitatively similar behavior for other datasets + models
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RESULTS
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RECALL:

Lower curve means more vulnerable

Higher curve means less vulnerable

RECALL:

Red means partition is more vulnerable
Blue means partition is less vulnerable
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RESULTS

Our results suggest that:

Robustness Bias appears to be present in the wild.

Some classes appear to uniformly be more/less robust across all models.
Some partitions of datasets appear to exhibit robustness bias more than
others.

DeepFool and CarliniWagner agree on the sign of the bias (with Sp<0.001S in

the Pearson's Chi-squared).
There is some evidence of agreement between the upper and lower bounds.
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CAN WE MITIGATE ROBUSTNESS BIAS?

Attempted the obvious regularization fix.

Tradeoff in equal treatment vs efficiency in general
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FUTURE DIRECTIONS

e Use adversarial training to balance mitigation with overall robustness hit

e What about on deployed models?
o Quantifying harms - ethical concerns for such measurements makes it hard

e How do other methods to mitigate fairness affect robustness bias?
e How does robustness bias change for robust models?

e Benchmarking current models for other kinds of perturbation based biases
o  Synthetic corruptions eg: ImageNet-C
o  Natural corruptions eg: ImageNetV2
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Check out our paper!

https://arxiv.org/abs/2006.12621

Get in touch: {vedant,sdooley1}@cs.umd.edu
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