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ROBUSTNESS BIAS
Most notions of fairness are defined by system outputs

Noise can cause a system to treat groups unfairly 

Noise
The closer points 
are more likely to 
be misclassified

Are some types of points 
systematically more robust than others?

Decision Boundary
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Sneak Peak:
YES!
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DATA PRELIMINARIES – PARTITION

Dataset
Partition by 

Predictor Variable
Partition by 

Sensitive Attribute
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INTUITION
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INTUITION
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INTUITION
𝜏
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Predictor Partition Robustness

Red 2/3

Blue 2/3

Sensitive Partition Robustness

Circles 2/3

X’s 2/3

Predictor Partition Robustness

Red 1/2

Blue 1/2

Sensitive Partition Robustness

Circles 2/3

X’s 1/3

ROBUSTNESS BIAS
Depends on the 

Data, Model, and Partition
*and also on tau
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- Let           be the minimal distance from point x to a decision boundary.

METRICS

- Given a dataset D, 𝛕 > 0, and partition P⊂D.

- Calculate

Brown

Yellow

Blue

Less 
Vulnerable

More 
Vulnerable
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to the decision boundary
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RESEARCH QUESTIONS

- Does robustness bias exist in the wild?
- How much does it depend on the dataset? the partition? the model?

MLP AlexNet

ResNet
VGG

DenseNet
SqueezeNet

PyramidNetClass Class

Age Age
Gender, Race Gender
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BUT WE CAN’T COMPUTE 

- All our models (except MLP) do not permit direct computation
- We can approximate           with upper or lower bounds

Upper Bound
Lower Bound
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DeepFool and CarliniWagner Randomized Smoothing



RESULTS

Qualitatively similar behavior for other datasets + models
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RECALL:
Red means partition is more vulnerable
Blue means partition is less vulnerable

RECALL:
Lower curve means more vulnerable
Higher curve means less vulnerable
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Male
Female

RECALL:
Red means partition is more vulnerable
Blue means partition is less vulnerable

RECALL:
Lower curve means more vulnerable
Higher curve means less vulnerable



RESULTS

Our results suggest that:

- Robustness Bias appears to be present in the wild.
- Some classes appear to uniformly be more/less robust across all models.
- Some partitions of datasets appear to exhibit robustness bias more than 

others.
- DeepFool and CarliniWagner agree on the sign of the bias (with $p<0.001$ in 

the Pearson's Chi-squared).
- There is some evidence of agreement between the upper and lower bounds.
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CAN WE MITIGATE ROBUSTNESS BIAS?

Attempted the obvious regularization fix. 

Tradeoff in equal treatment vs efficiency in general
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Without Regularization With Regularization Without Regularization With Regularization

More equal, but 
less robust
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FUTURE DIRECTIONS

● Use adversarial training to balance mitigation with overall robustness hit
● What about on deployed models?

○ Quantifying harms - ethical concerns for such measurements makes it hard
● How do other methods to mitigate fairness affect robustness bias?
● How does robustness bias change for robust models?
● Benchmarking current models for other kinds of perturbation based biases

○ Synthetic corruptions eg: ImageNet-C
○ Natural corruptions eg: ImageNetV2
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Check out our paper!
https://arxiv.org/abs/2006.12621
Get in touch: {vedant,sdooley1}@cs.umd.edu 
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