Do Invariances in Deep Neural Networks Align with
Human Perception?

AAAI 2023

)

‘ﬂ
Vedant Nanda

PhD Student
University of Maryland & MPI-SWS

John
Dickerson




Invariances are Crucial for Robust Deep Learning

We need to make sure models learn correct invariances

6=t b fC 6=rC 9)

Lack of human-like invariances => Models fail in unexpected ways!

Measuring alignment of invariances is a fundamental measure of robustness



Robustness Evaluation Today

Accuracy under adversarial perturbations (Carlini et al., 2019; @
Mad ry et al y 201 8) A standardized benchmark for adversarial robustness

https://robustbench.github.io (Croce et al., 2021)

e FEvaluate accuracy under worst case perturbation in a given
threat model (eg: Ep, patch etc)

Accuracy under various distribution shifts

ImageNetV2 (Recht et al., 2019)

ImageNet-R (Hendrycks et al., 2021)

ImageNet-C, ImageNet-P (Hendrycks et al., 2019)
ObjectNet (Barbu et al., 2019)

ImageNet-Sketch (Wang et al.. 2019)

e ImageNet-A (Hendrycks et al., 2019)

https://openai.com/blog/clip (Radford et al., 2021)



https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/2006.16241
https://arxiv.org/abs/1903.12261
https://objectnet.dev/
https://arxiv.org/abs/1905.13549
https://arxiv.org/abs/1907.07174
https://robustbench.github.io
https://openai.com/blog/clip

The Other Direction of Robustness Evaluation

Do Invariances in DNNs align with Human Perception?

Humans

| ]

- How to choose X?

- [Choosing T] Infinitely many T. How to pick appropriate T?

- [Humans] No access to representations in human brain




Our Contribution

° Highlight the role of loss function used in finding invariant transforms
o Reconcile seemingly contradictory takeaways in prior work
° Provide an improved way of measuring alignment with human perception

o Does not require labelled data
o Scalable

e Analyze how architectures, losses, data augmentations affect alignment
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Robustness Evaluation

»» m_ (model)

Same ?

FEEY Y

1. Find Identically Represented Inputs (IRls) x, x’ such that m._(x) =m_(x’)

Representation Inversion wanendran & vedaidi. cver 2015)

argmin_| £(x’)

x'=x"-«a Vx,§€



https://arxiv.org/abs/1412.0035

Loss Used to Generate IRlIs

1. Find Identically Represented Inputs (IRls) X, X’ such that m_(X) = m_(X)

Representation Inversion (vanendran & vedaldi. cver 2015)

argmin_, | £(x’)

X
x'=x"-aV_ &
X
Lx)=|lm,x)-m,x) |, + X" R(x)
Regularizer-free R(x’)=0
—

Human-Aligned R(x’)=TV(x) + || x’ ||p Removes high-frequency components from x’
Adversarial R(x’) = -1 * LPIPS(x, x’) Makes x and x’ perceptually distant

(Zhang et al.. 2018) 8



https://arxiv.org/abs/1412.0035
https://arxiv.org/abs/1801.03924

Loss Used to Generate IRIs

Adversarial
R(x’) = -1 * LPIPS(x, x’)

Regularizer-freeRr
(x)=0

Human-Aligned
R) = TV) + | x|,




Regularizer impacts takeaways about alignment!
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Olah et al., 2017

Parts of DNNs encode
human-like concepts

Prior works do not
directly engage with the
choice of regularizer
and hence make
incomplete conclusions

Under the pessimistic lens of adversarial regularizer all models are poorly aligned
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Our Contribution

® Highlight the role of loss function used in finding invariant transforms
o Reconcile seemingly contradictory takeaways in prior work — choice of regularizer impacts
takeaways
° Provide an improved way of measuring alignment with human perception

o Does not require labelled data
o Scalable
e Analyze how architectures, losses, data augmentations affect alignment
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Robustnhess Evaluation

E 4 m_ (model)

il VR Sy

00000

We need to reliably and scalably check if Humans perceive x and x’ similarly

(K



Check if humans perceive these inputs similarly

2AFC Clustering

Query 1/2:

For each query image (shown in each row), choose the most perceptually similar image

Query Image 1/13: from the columns:

Initial

Scalability: since these tests are based on comparisons, we can use perceptual
distance measures like LPIPS to simulate humans (Zhang et al.. 2018)
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https://arxiv.org/abs/1801.03924

TRAINING

STANDARD

TRAINING

ROBUST

STANDARD

RESNETI18
VGG16
INCEPTIONV3
DENSENET121
RESNETI18
VGG16
INCEPTIONV3
DENSENET121

MODEL

RESNETI18
RESNET50
VGG16
RESNET18
RESNET50
VGG16

Evaluation: Reliability

\

96.0042 55
38.83+7.59
82.004+8.44
98.67+0.24
0.174+0.24
0.174+0.24
9.831+9.97

93.1715.95
99.50+0.00
95.5042.12

\

CIFARI10

HUMAN

CLUSTERING
97.48j;1,30
55.3871+5.629

84.47 16.32
97.64:1:2.08

38.595:+1.19

33.8412.70
38.38+4.06
42.4215.02

IMAGENET

HUMAN

CLUSTERING
96.00-+3.59

99.49+0.71
91.75+5.22

33.33+0.00

38.38+2.53

33.96+2.00

Both clustering and
2AFC achieve similar
ranking among models

Low variance among
annotators

=> Humans can
determine alignment
reliably
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TRAINING

STANDARD

TRAINING

ROBUST

STANDARD

RESNETI18
VGG16
INCEPTIONV3
DENSENET121
RESNETI18
VGG16
INCEPTIONV3
DENSENET121

MODEL

RESNETI18
RESNET50
VGG16
RESNET18
RESNET50
VGG16

Evaluation: Scalability

96.00+2 55
38.83+7.59
82.00+8.44
98.67+0.24
0.174+0.24
0.174+0.24
9.831+9.97

93.1715.95
99.50+0.00
95.5042.12
0.00+0.00
5.33+7.54
0.00+0.00

CIFAR10
HUMAN LPIPS
CLUSTERING CLUSTERING
97.48:*:1.30
55.387 +5.629
84.47 16.32
97.64:*:2.08
38.55+1.19
33.84+2.70
38.38+4.06
42.4215 02
IMAGENET

HUMAN LPIPS
CLUSTERING CLUSTERING

96.00-+3.59
99.4940.71
91.7545.22
33.3310.00
38.38+2.53
33.96+2.00

LPIPS orders
models
same as
humans

=> Can
analyze
models at
scale

0.50
0.50
0.00
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Our Work

® Highlight the role of loss function used in finding invariant transforms
o Reconcile seemingly contradictory takeaways in prior work — choice of regularizer impacts
takeaways
° Provide an improved way of measuring alignment with human perception

o Does not require labelled data
o Scalable

e Analyze how architectures, losses, data augmentations affect alignment
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Results: Architectures, Losses, Data Augmentations

Alignment
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hitecture

Standard TRADES (6) I MART (1) —o— Ci i -
o TRADES (10) MART (6) o= SimCLR DA o= SimCLR (DA - color)

TRADES (0.1) MART (0.1) MART (10) —¢— SImCLR (DA + Adv)  _ _ SSJp?chiS%d lAT
TRADES (1) (best model)

1. Adversarial data augmentation using ¢, threat model

2. Architectures with residual connections 3. Self-supervised contrastive loss 15



Summary

- We highlight challenges and common pitfalls in measuring alignment with human perception
- We propose an improved method to measure alignment at scale

- Using our method we show how residual connections, adversarial data augmentation and
contrastive loss help in increasing alignment

y

tinyurl.com/invariances-human github.com/nvedant07/Human-NN-Alignment

Thank You!
vhanda@mpi-sws.org

Poster # 111

20



Prior Works

(Colah et al.,2017) Certain parts of DNNs encode human-like concepts

(Engstrom et al., 2019) Adversarially trained models induce a “human prior” over
learned representations

(Feather et al., 2019) Invariances in later layers diverge from human perception

Contradictory takeaways. What’s going on?

21


https://proceedings.neurips.cc/paper/2019/hash/ac27b77292582bc293a51055bfc994ee-Abstract.html
https://distill.pub/2017/feature-visualization/
https://arxiv.org/abs/1906.00945

Evaluation
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Our Work

e Reconcile difference in takeaways of prior work
o Highlight challenges and common pitfalls in measuring alignment — choice of regularizer
impacts takeaways

e Provide an improved way of measuring alignment with human perception

o Does not require labelled data
o Scalable

e Analyze how architectures, losses, data augmentations affect alignment

o Architectures with residual connections,
o  Adversarial data augmentation using £, threat model
o Self-supervised contrastive loss
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