

Do Invariances in Deep Neural Networks Align with Human Perception?

Vedant Nanda 🐢 🧞 ,

Ayan Majumdar 🧞,

University of Maryland, College Park

Learning the Right Invariances is Necessary for Robustness

Lack of human-like invariances makes models fail in unexpected ways

In order for models to be robust, they must learn invariances that align with human perception

Ideal Robustness Evaluation

Key Q: How do we measure alignment between model and human invariances?

ROBUSTBENCH

Robustness benchmarks used today are special cases Eg: adversarial robustness tests invariance to $\ell_{\rm p}$ perturbations, ImageNet-C to blur, noise etc.

6 Our finding: residual connections + adversarial data augmentation + self-supervised training w contrastive loss = higher alignment 🖋

We identify challenges and highlight the key role of loss used to generate identically represented inputs in measuring alignment with human perception

We propose an improved method to measure alignment that does not required labelled data and can scale well

Our Proposal for Measuring Alignment

(Mahendran&Vedaldi, 2015)

 $\mathcal{L}(x') = \| m_1(x) - m_1(x') \|_2 / \| m_1(x) \|_2$ + $\lambda^* R(x')$

Ask human annotators* if x is closer to initial x' or final x'

*For scalability, we show that we can use perceptual distance LPIPS (Zhang et al., 2018) to automate these judgments

Camila Kolling 🧞, John P. Dickerson, Max Planck Institute for Software Systems

Krishna P. Gummadi 🧞,

1 University College London

tinyurl.com/invariances-human

github.com/nvedant07/Human-NN-Alignment

Bradley C. Love

Adrian Weller

University of Cambridge

Major Challenges

► How to choose X? [Results in the paper]

► No access to humans' representation [Visual similarity]

\blacktriangleright How to pick T? *i.e.* How to define the regularizer R?

Prior works on measuring alignment have seemingly contradictory takeaways since they do not explicitly engage with the choice of *R*

(Colah et al., 2017) Certain parts of DNNs encode human-like concepts

(Engstrom et al., 2019) Adversarially trained models induce a "human prior" over learned representations (Feather et al., 2019) Invariances in later layers diverge from human perception

Importance of Loss Used to Generate Identically Represented Inputs

CIFAR10					
TRAINING	MODEL	ALIGNMENT			T
		REG	HUMAN-	ADVER-	
		Free	ALIGNED	SARIAL	
-	RESNET18	$63.25_{\pm 26.23}$	$79.00_{\pm 21.94}$	$0.33_{\pm 0.47}$	Γ
AT	VGG16	$0.25_{\pm 0.43}$	$41.41_{\pm 16.74}$	$1.00_{\pm1.41}$	
$\ell_2, \epsilon = 1$	INCEPTIONV3	$23.25_{\pm 25.56}$	$64.75_{\pm 24.17}$	$3.00_{\pm 4.24}$	
	DENSENET121	$82.75_{\pm 20.07}$	$86.25_{\pm 14.50}$	$1.33_{\pm1.89}$	
STANDARD	RESNET18	$0.00_{\pm0.00}$	$21.09_{\pm 13.51}$	$1.33_{\pm 1.89}$	
	VGG16	$0.00_{\pm 0.00}$	$21.88_{\pm 14.82}$	$0.00_{\pm 0.00}$	
	INCEPTIONV3	$0.00_{\pm 0.00}$	$21.88_{\pm 17.54}$	$0.33_{\pm 0.47}$	
	DENSENET121	$0.00_{\pm 0.00}$	$26.56 {\scriptstyle \pm 16.90}$	$0.00_{\pm 0.00}$	
IMAGENET					-
TRAINING	MODEL	ALIGNMENT			Γ
		REG	Human-	ADVER-	
		Free	ALIGNED	SARIAL	
	RESNET18	$42.00_{\pm 38.33}$	$46.75_{\pm 39.37}$	$0.33_{\pm 0.47}$	
AT	RESNET50	$51.00_{\pm 34.89}$	$45.75_{\pm 37.39}$	$14.00_{\pm 3.74}$	
$\ell_2, \epsilon = 3$	VGG16	$55.50_{\pm 34.14}$	$55.50_{\pm 38.29}$	$11.00_{\pm 3.74}$	
	RESNET18	$0.00_{\pm 0.00}$	$17.00_{\pm 28.30}$	$0.00_{\pm 0.00}$	
STANDARD	RESNET50	$0.00_{\pm 0.00}$	$16.25 {\scriptstyle \pm 26.42}$	$0.00_{\pm 0.00}$	
	VGG16	$0.00_{\pm 0.00}$	$0.00_{\pm0.00}$	$0.00_{\pm 0.00}$	

Olah et al., 2017 Engstrom et al., 2019 Feather et al., 2019

All models are poorly aligned under the pessimistic lens of adversarial regularizer

What Components of DL Pipeline Contribute to Alignment?

