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TL;DR of Diffused Redundancy

We show that a randomly selected subset of neurons can perform
(almost) as well as the full layer for downstream tasks

* Implications for nature of learned representations: do distinct parts of a network learn distinct features?
Or are features diffused all over the neurons?

* Our results suggest diffused redundancy of features!

* While primarily an “understanding” paper, it also opens new directions for efficient finetuning / inference

* We highlight possible fairness tradeoffs when using random subsets of neurons



Pretrained Representations Are Everywhere

* For any NLP/Vision task:
* Pick a pre-trained backbone

* Solve the downstream task using features extracted from this backbone

* Eg: Image Classification

* Ground-breaking performance!

* However, understanding the nature of learned features is an ongoing research effort



Understanding The Nature of Learned Representations

» Explainability: Compositionality between parts of a network

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car

detector, especially at SRS
the bottom.

Zoom In: An Introduction to Circuits. Olah et al. 2020

xS ‘s"*’ » ‘
A car detector (4c:447)

is assembled from
earlier units.

Wheels (4b:373) excite l”I ‘
the car detector atthe Sl
bottom and inhibit at
the top.

* Deep Learning Theory: Compression Phase [Shwartz-Ziv and Tishby, 2017] & Neural
Collapse [Papyan et al. 2020}

* Representations need not store all information about the input

* Do we need all neurons?



Diffused Redundancy

Learned features are spread throughout the layer, and thus a random subset of (of
sufficient size) neurons suffices for most downstream tasks

, Pick 2 random neurons
Pre-trained '
> Backbone > > . >

(ViT/ResNet etc)

DL Theory: Few neurons contain enough information to efficiently transfer

Explainability: Information is redundantly spread out over many neurons, thus still
allowing compositionality



Evidence of Diffused Redundancy
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* Degree of diffused redundancy depends on downstream task and pretraining loss

* More evidence in the paper!



Possible Fairness Considerations

* A natural application — use the “compact” representation for efficient transfer

* However, this can lead to potential biases
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Some classes are affected more than others!



More Results in The Paper!

* How is diffused redundancy affected by:
* last layer size,
* different pretraining losses,
* different pretraining datasets
* Why this happens — comparison to PCA and random projections

* Come chat with me at my NeurIPS poster! #634 Wed 13 Dec, Poster Session #3

Please reach out if you'd like to chat! vnanda@mpi-sws.org
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